Derivatives

Objectives

- Know what definition of derivative is.
- Know what Power and Sum Rules are.
- Know what Product and Quotient Rules are.
- Know what Chain rule is.
- Know what High-Order derivatives are.
- Know what Implicit differentiation is.

What is a derivative?

The derivative $f^{\prime}(x)$ of a function $f(x)$ says how fast $f(x)$ changes as x changes.

- Visually, $f^{\prime}(x)$ is the slope of $f(x)$ at x.

Example: If $f(x)=$ $\frac{1}{4} x^{2}$ then $f^{\prime}(2)=1$ because the slope of $f(x)$ at $x=2$ is 1 . We can see this by looking at the tangent line to $f(x)$ at $x=2$.

Why are derivatives useful?

- Tells us how quickly something is changing.
- In physics: velocity is the derivative of position and acceleration is the derivative of velocity (with respect to time).
- Optimization: Derivatives are crucial for finding the minimum or maximum of functions.
- And much much more.

Computing derivatives

To compute the slope of a line, we take $\frac{\Delta y}{\Delta x}$ (rise/run) We could try to do the same thing with a function, taking $\frac{f(x+\Delta x)-f(x)}{(x+\Delta x)-x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}$

Unfortunately, the slope of $f(x)$ can change with x, so we 3 get the average slope of $\mathrm{f}(\mathrm{x}) 2$ over the interval $[x, x+\Delta x]$ rather than the exact slope of $f(x)$ at x.
However, if we make Δx smaller and smaller, the slope of $f(x)$ varies less and

$$
f(x)=\frac{x^{3}}{16}
$$ less in $[x, x+\Delta x]$ and we get a better and better estimate.

Derivative Definition and Examples

We accomplish this by taking the limit as $\Delta x \rightarrow 0$.
Definition: $\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
If $f^{\prime}(x)$ exists then we say that f is differentiable at x
Example: If $f(x)=3 x+4$ then
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta x \rightarrow 0} \frac{3(x+\Delta x)+4-(3 x+4)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{3 \Delta x}{\Delta x}=3$
Example: If $f(x)=x^{2}$ then
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=$
$\lim _{\Delta x \rightarrow 0} \frac{2 x \Delta x+(\Delta x)^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} 2 x+\Delta x=2 x$

Differentiable Implies Continuous

- Restatement of continuity: \mathbf{f} is continuous at \mathbf{x} if and only if $f(x)$ exists and $\lim _{\Delta x \rightarrow 0} \Delta f=$ 0 where $\Delta f=f(x+\Delta x)-f(x)$.
- \mathbf{f} is differentiable $\Leftrightarrow f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}$ exists
- If \mathbf{f} is differentiable at \mathbf{x} then

$$
\lim _{\Delta x \rightarrow 0} \Delta f=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x} \cdot \lim _{\Delta x \rightarrow 0} \Delta x=f^{\prime}(x) \cdot 0=0
$$

Thus, differentiability implies continuity Warning: The converse is false. Not all continuous functions are differentiable!

Power Rule

- For nonnegative integers $\mathbf{n},(x+\Delta x)^{n}=\sum_{j=0}^{n}\binom{n}{j}(\Delta x)^{j} x^{n-j}$ Examples:

$$
\begin{aligned}
& (x+\Delta x)^{2}=x^{2}+2(\Delta x) x+(\Delta x)^{2} \\
& (x+\Delta x)^{3}=x^{3}+3(\Delta x) x^{2}+3(\Delta x)^{2} x+(\Delta x)^{3} \\
& (x+\Delta x)^{4}=x^{4}+4(\Delta x) x^{3}+6(\Delta x)^{2} x^{2}+4(\Delta x)^{3} x+(\Delta x)^{4} \\
& \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=\frac{\left(x^{n}+n(\Delta x) x^{n-1}+(\Delta x)^{2}(\ldots)\right)-x^{n}}{\Delta x}=n x^{n-1}+(\Delta x)(\ldots)
\end{aligned}
$$

$\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=\lim _{\Delta x \rightarrow 0} n x^{n-1}+(\Delta x)(\ldots)=n x^{n-1}$
If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$
This holds for all \mathbf{n}, not just nonnegative integers! We'll prove this for rational numbers later using implicit differentiation.

Derivative of $\sin (x)$

- $\frac{\sin (x+\Delta x)-\sin (x)}{\Delta x}=\frac{\sin (x) \cos (\Delta x)+\cos (x) \sin (\Delta x)-\sin (x)}{\Delta x}$
- $\frac{\sin (x+\Delta x)-\sin (x)}{\Delta x}=\sin (x) \frac{(\cos (\Delta x)-1)}{\Delta x}+\cos (x) \frac{\sin (\Delta x)}{\Delta x}$
- $\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin (x)}{\Delta x}=\sin (x) \lim _{\Delta x \rightarrow 0} \frac{(\cos (\Delta x)-1)}{\Delta x}+\cos (x) \lim _{\Delta x \rightarrow 0} \frac{\sin (\Delta x)}{\Delta x}$
- Recall that $\lim _{\Delta x \rightarrow 0} \frac{\sin (\Delta x)}{\Delta x}=1$
- Recall that $\lim _{\Delta x \rightarrow 0} \frac{(\cos (\Delta x)-1)}{\Delta x}=0$
- $\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin (x)}{\Delta x}=\sin (x) \cdot 0+\cos (x) \cdot 1=\cos (x)$
- If $f(x)=\sin (x)$ then $f^{\prime}(x)=\cos (x)$

Derivative of $\cos (x)$

- Following similar reasoning,
if $f(x)=\cos (x)$ then $f^{\prime}(x)=-\sin (x)$

Derivatives of Sums and Differences

- $\frac{d(f+g)}{d x}=\frac{d f}{d x}+\frac{d g}{d x}$
- $\frac{d(f-g)}{d x}=\frac{d f}{d x}-\frac{d g}{d x}$
- This seems intuitive, but let's check the first equation to be sure.
- Take $\Delta f=f(x+\Delta x)-f(x)$
$\frac{d(f+g)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta(f+g)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f+\Delta g}{\Delta x}=$
$\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}=\frac{d f}{d x}+\frac{d g}{d x}$

The Product Rule

- What is $\frac{d(f g)}{d x}$?
- Warning: $\frac{d(f g)}{d x} \neq \frac{d f}{d x} \cdot \frac{d g}{d x}$
- $\Delta(f g)=(f+\Delta f)(g+\Delta g)-f g$
- $\Delta(f g)=f \Delta g+g \Delta f+\Delta f \Delta g$
- $\frac{d(f g)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta(f g)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f \Delta g+g \Delta f+\Delta f \Delta g}{\Delta x}$
- $\frac{d(f g)}{d x}=f \lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}+g \lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta f \Delta g}{\Delta x}$
- $\frac{d(f g)}{d x}=f \frac{d g}{d x}+g \frac{d f}{d x}$

The Quotient Rule

- What is $\frac{d(t)}{d x}$?
- Warning: $\frac{d\left(\frac{f}{g}\right)}{d x} \neq \frac{\frac{d f}{d x}}{\frac{d g}{d x}}$
- $\Delta\left(\frac{f}{g}\right)=\frac{f+\Delta f}{g+\Delta g}-\frac{f}{g}=\frac{f g+g \Delta f-f g-f \Delta g}{g(g+\Delta g)}=\frac{g \Delta f-f \Delta g}{g(g+\Delta g)}$
$\frac{d\left(\frac{f}{g}\right)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta\left(\frac{f}{g}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\frac{g \Delta f-f \Delta g}{g(g+\Delta g)}}{\Delta x}=\frac{g \lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}-f \lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}}{\lim _{\Delta x \rightarrow 0} g(g+\Delta g)}$
$\frac{d\left(\frac{f}{g}\right)}{d x}=\frac{g \frac{d f}{d x}-f \frac{d g}{d x}}{g^{2}}$

The Chain Rule

- What is $\frac{d}{d x}(f(u))$ where u is a function of x ?
- Chain rule: $\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}$
- Example: If $f(x)=\sqrt{1+x^{2}}$ then taking $u=1+x^{2}$ and $f(u)=\sqrt{u}$, $\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\frac{1}{2 \sqrt{u}} \cdot 2 x=\frac{x}{\sqrt{1+x^{2}}}$

Chain Rule:

Consider a simple composite function:

$$
\begin{aligned}
& y=6 x-10 \\
& y=2(3 x-5) \\
& \text { If } u=3 x-5 \\
& \text { then } y=2 u
\end{aligned}
$$

and another:

$$
\begin{array}{lcc}
y=5 u-2 & y=5(3 t)-2 & y=5 u-2 \\
y=15 t-2 \\
\text { where } u=3 t & \frac{d y}{d t}=15 \quad \frac{d y}{d u}=5 t
\end{array}
$$

and one more:

$$
y=9 x^{2}+6 x+1 \quad y=u^{2} \quad u=3 x+1
$$

$y=(3 x+1)^{2}$
If $u=3 x+1$
then $y=u^{2}$

This pattern is called the chain rule.

Chain Rule:
 $$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

If $f \mathrm{o} g$ is the composite of $y=f(u)$ and $u=g(x)$, then:

$$
\begin{gathered}
(f \mathrm{o} g)^{\prime}=f_{\mathrm{at} u=g(x)}^{\prime} \cdot g_{\mathrm{at} x}^{\prime} \\
f^{\prime}(x)=\cos x \quad g^{\prime}(x)=2 x \quad g(2)=4-4=0 \\
f^{\prime}(0) \cdot g^{\prime}(2) \\
\cos (0) \cdot(2 \cdot 2) \\
1 \cdot 4=4
\end{gathered}
$$

We could also do it this way:

$$
\begin{aligned}
& f(g(x))=\sin \left(x^{2}-4\right) \\
& y=\sin \left(x^{2}-4\right) \\
& y=\sin u \quad u=x^{2}-4 \\
& \frac{d y}{d u}=\cos u \quad \frac{d u}{d x}=2 x \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& \frac{d y}{d x}=\cos u \cdot 2 x
\end{aligned} / \frac{d y}{d x}=\cos \left(x^{2}-4\right) \cdot 2 x
$$

Here is a faster way to find the derivative:

$$
\begin{gathered}
y=\sin \left(x^{2}-4\right) \\
y^{\prime}=\cos \left(x^{2}-4\right) \cdot \frac{d}{d x}\left(x^{2}-4\right) \quad \begin{array}{l}
\text { Differentiate the outside } \\
\text { function... }
\end{array}
\end{gathered}
$$

$$
y^{\prime}=\cos \left(x^{2}-4\right) \cdot 2 x
$$

...then the inside function

$$
\text { At } x=2, y^{\prime}=4
$$

Another example:
 derivative of the inside function

Another example:

$$
\begin{gathered}
\frac{d}{d x} \cos ^{2}(3 x) \\
\frac{d}{d x}[\cos (3 x)]^{2} \\
2[\cos (3 x)] \cdot \frac{d}{d x} \cos (3 x) \\
2 \cos (3 x) \cdot-\sin (3 x) \cdot \frac{d}{d x}(3 x)-\text { The chain rule can be } \\
-2 \cos (3 x) \cdot \sin (3 x) \cdot 3 \quad \text { used more than once. } \\
-6 \cos (3 x) \sin (3 x) \quad \text { "chain" in the "chain rule"!) }
\end{gathered}
$$

Derivative formulas include the chain rule!

$$
\begin{aligned}
\frac{d}{d x} u^{n} & =n u^{n-1} \frac{d u}{d x} & \frac{d}{d x} \sin u=\cos u \frac{d u}{d x} \\
\frac{d}{d x} \cos u & =-\sin u \frac{d u}{d x} & \frac{d}{d x} \tan u=\sec ^{2} u \frac{d u}{d x}
\end{aligned}
$$

etcetera...

Every derivative problem could be thought of as a chain-rule problem:

derivative of outside function

The derivative of x is one.

derivative of inside function

Higher order derivatives

Do you remember your different notations for derivatives?

$$
f^{\prime}(x) \quad y^{\prime} \quad \frac{d y}{d x}
$$

Well these are the same notations for higher power derivatives! Any guesses on what each means?
$f^{\prime \prime}(x) \quad$ the second derivative of f
$y^{\prime \prime \prime} \quad$ the third derivative
$\frac{d^{2} y}{d x^{2}}$
the second derivative

Example

Find the fourth derivative of $f(x)=x^{4}-2 x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-6 x^{2} \\
& f^{\prime \prime}(x)=12 x^{2}-12 x \\
& f^{\prime \prime \prime}(x)=24 x-12 \\
& f^{\prime \prime \prime \prime}(x)=24
\end{aligned}
$$

Implicit Differentiation

- Consider an equation involving both x and y :

$$
x^{2}-y^{2}=49
$$

- This equation implicitly defines a function in x
- It could be defined explicitly
$y=\sqrt{x^{2}-49} \quad($ where $|x| \geq 7)$

Differentiate

- Differentiate both sides of the equation
- each term
- one at a time
- use the chain rule for terms containing y
- For
we get

$$
x^{2}-y^{2}=49
$$

- Now solve for $\mathbf{d y} / \mathbf{d x} \quad 2 x-2 y \frac{d y}{d x}=0$

Differentiate

- Then $2 x-2 y \frac{d y}{d x}=0$
gives us

$$
\frac{d y}{d x}=\frac{2 x}{2 y}=\frac{x}{y}
$$

- We can replace the y in the results with the explicit value of y as needed
- This gives us the slope on the curve for any legal value of x

Guidelines for Implicit Differentiation

1. Differentiate bodh sides of the equation with respect to x.
2. Collect all terms involving dy dx on the left side of the equation and move all other terms to the right side of the equation.
3. Factor dy d drout of the eff side of the equation.
4. Solve for dy) dx by dividing both sides of the equation by the eff-1.hand factor that does not contain dy $/ d x$.

Slope of a Tangent Line

- Given $x^{3}+y^{3}=y+21$
find the slope of the tangent at $(3,-2)$
- $3 x^{2}+3 y^{2} y^{\prime}=y^{\prime}$
- Solve for y^{\prime}

$$
y^{\prime}=\frac{3 x^{2}}{1-3 y^{2}}
$$

Substitute $x=3, y=-2$

$$
\text { slope }=\frac{27}{-11}
$$

Second Derivative

- Given $x^{2}-y^{2}=49$
- $y^{\prime}=?$?

- $y^{\prime \prime}=$
$\frac{d^{2} y}{d x^{2}}=\frac{y-x \cdot y^{\prime}}{y^{2}}$
Substitute

