Derivatives

Objectives

- Know what definition of derivative is.
- Know what Power and Sum Rules are.
- Know what Product and Quotient Rules are.
| - Know what Chain ruleis.

- Know what High-Order derivatives are.
- Know what Implicit differentiation is.




What I1s a derivative?

e The derivative f'(x) of a function f(x) says
| how fast f(x) changes as x changes.

e Visually, f'(x) is the slope of f(x) at x.

Example: If f(x) =

%xz then £'(2) = 1
because the slope of
f(x)atx =2is 1. We f{(x)
can see this by looking

at the tangent line to
f(x)atx = 2.
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Why are derivatives
useful?

e Tells us how quickly something is
changing.

e In physics: velocity is the derivative of
position and acceleration Is the
derivative of velocity (with respect to
time).

e Optimization: Derivatives are crucial for

finding the minimum or maximum of
functions.

e And much much more.




Computing derivatives

To compute the slope of a line, we take i—i’ (rise/run)

We could try to do the same thing with a function,
fletAx)—f(x) _ flx+Ax)—f(x)

taking e ' 0 23

X) =—
Unfortunately, the slope of 4 16
f(x) can change with x, so we 3 /
get the average slope of f(x) 2 /
over the interval [x, x + Ax] 1 -~

rather than the exact slope g '
of f(x) at x. -1 /
However, if we make Ax )
smaller and smaller, the 3 /
slope of f(x) varies less and -4
lessin [x,x + Ax]andweget -4-3-2-1 012 3 4

a better and better estimate. X 4




Derivative Definition and
Examples

We accomplish this by taking the limit as Ax — 0.

Definition: f'(x) = lim f(x+A22—f(x)
x—

If f(x) exists then we say that f is differentiable at x

Example: If f(x) = 3x + 4 then
3(x+Ax)+4—(3x+4) 3Ax

R I A
Example: If f(x) = x* then

, e (e+Ax)E—x*

F'(x) = Alalcr—r>lo | Ax B

lim 2xBx+(A0)” _ lim 2x + Ax =2x

Ax—0 Ax Ax—0



Differentiable Implies

Continuous

e Restatement of continuity: f Is continuous
at x if and only if f(x) exists and lim Af =

0 where Af = f(x + Ax) — f(x). w0

o fis differentiable & f'(x) = lim 2 exists
Ax—0 Ax
o If fIs differentiable at x then
. n Af . ,
S = BB MmN = S0 =0

e Thus, differentiability implies continuity

o Warning: The converse is false. Not all
continuous functions are differentiable!




Power Rule

For nonnegative integers n, (x + Ax)"™ = X7 0( )(Ax)fx" J

Examples:

(x + Ax)? = x% + 2(Ax)x + (Ax)?

(x + Ax)3 = x3 + 3(Ax)x? + 3(Ax)*x + (Ax)3

(x + Ax)* = x* + 4(Ax)x3 + 6(Ax)*x? + 4(Ax)3x + (Ax)*

Ce+Ax)"—x™ (XM 4+n(Ax) x4+ (A% (L)) g
" = v =nx""" 4+ (Ax)(...)

. (A —x™ . n—1  n-1
A1}161_r>10 " = Al)lcr_r}()nx + (Ax)(...) = nx
If f(x) = x™then f'(x) = nx™1
This holds for all n, not just nonnegative integers! We’ll
prove this for rational numbers later using implicit
differentiation.




Derivative of sin(x)

sin(x+Ax)—sin(x) _ sin(x) cos(Ax)+cos(x) sin(Ax)—sin(x)

Ax - Ax
sin(x+Ax)-sin(x) . (cos(Ax)—1) sin(Ax)
Ax = sin(x) Ax + cos(x)

. sin(x+Ax)—-sin(x cos(Ax)—1 sin(Ax
lim 3¢ )-sin@) _ sin(x) lim (cosian)—1) | cos(x) lim (&x)
Ax—0 Ax Ax—0 Ax Ax—0 Ax

Recall that lim S24% _ ¢
Ax—0 Ax
Recall that lim o330 _
Ax—0 Ax

. sin(x+Ax)—-sin(x
lim ( )—sin(x)
Ax—0 Ax

If f(x) = sin(x) then f'(x) = cos(x)

= sin(x) - 0 + cos(x) - 1 = cos(x)



Derivative of cos(x)

e Following similar reasoning,

If f(x) = cos(x) then f'(x) = —sin(x)




Derivatives of Sums
and Differences

o d(f+g) _ df
dx dx dx
o dU-9) _df dg
ax ax ax

e This seems intuitive, but let’s check
the first equation to be sure.

o Take Af = f(x + Ax) — f(x)

o *D _ i AUHY) _ . ASFAG
dx Ax—0 Ax Ax—>0 Ax
lim a7 + lim A _ 4 |

Ax—0 Ax Ax—n)Ax dx = dx
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The Product Rule
‘e What Is d(fg)?

dx
: d d d
e Warning: (dfj)idi-di

e A(fg) = (f +Af)(g+Ag9) —fg
e A(fg) = fAg + gAf + AfAg

o U9 _ iy AUD) _ i, JAGHIATHASAG
dx Ax—0 Ax Ax—0 Ax
d(f9) _ ¢ 1., Ag . Af L. AfAg
* Tax T / Al}cglo Ax tJg Alglcrllo Ax T Al}cglo Ax
a(fg) _ pdg af
° dx - f dx T g dx
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The Quotient Rule
a(%)

e What is —227?

dx
o 40 L 2
e \Warning: — % dg
dx
o A (L) _ fHAf _ f _ fg+gAf-fg-fdg _ gAf-fAg
9 gtldg g g(g+Ag) g(g+Ag)
A f gAf—fAg . Af . Ag
o ﬁ — hm ﬁ — hm g(g+Ag) — gAlgi'r—r}oAx fAlgch_r)loAxl
dx  Ax—0 Ax  Ax-0 Ax Jim g(g+Ag)
f df .dg
ag) _ g5-ri
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The Chain Rule

e What is %(f(u)) where u is a

function of x?

| if df d
e Chain rule: & = & . du
dx du dx

e Example: If f(x) = V1 + x2 then
taking u =1+ x% and f(u) = u,

df df du 1 5 — X
dx du dx 2/u x_\/l x?2
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Chain Rule:

1 Consider a simple composite function:
y=6x-10  y=6x-10  y=2u  u=3x-5

Yy =2(3x~5) l Olyl |
If u=3x-5 dx \ du/Z/\d_XJ
theny = 2u 6=2-3

dy dy du

dx du dx
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and another:
y =5U—2 y=5(3t)-2 y=ou-2  u=3t

where u =3t y=15t-2

@y 5 H_g 0 du_g
dt

NP
'

dy dy du

dt du dt
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and one more:

y=9x"+6X+1 y=u° u=3x+1

y=(3x+1)2 \ l
d d
If u=3x+1 d—y:18x+6 —y:2u d_u:3
X du dx
theny =u’ ;
& _2(3x+1)
du
dy 6x+2
18x+6_ 6x+2

This pattern is called

the chain rule. — | dy _ dy “du

dx du dx
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. . |dy _dy du
Chain Rule: —du e

If f og is the composite of y = f (u)and u=g(x) ,
then:

( f Og)’ = 1:af[u=g(x) ' g;tx

f'(x)=cosx g'(x)=2x g(2)=4-4=0
f'(0)-9'(2)
cos(0)-(2-2)
1-4 =4




We could also do it this way:
f(g(x))=sin(x* -4
y:sin(x2—4)

y=sinu Uu=x’-4

ﬂ =Cosu d_u = 2X
du dx

dy dy du
dx du dx

% =cos(x* —4)- 2x

%ZCOS(ZZ —4)-2-2
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Here is a faster way to find the derivative:

y =sin(x* -4)

y' = cos(X’ —4)-i(x2 —4) Differentiate the outside
ax function...

y = cos(x2 —4)-2x ...then the inside function

At x=2,y =4

19



Another example:

d

—C0S“ (3x

ax ( )

It looks like we need to

%[003(3)()]2 F_ use the chain rule again!

2| COS 3x —CO0S(3X
loos(31)]) e
Y
I

derivative of the
outside function

Y

derivative of the
Inside function
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Another example:

d >
— 3
™ COS ( x)

%[(:os(?ux)]2

2| cos(3x) |- % cos(3x)

The chain rule can be

: d
2005(3x)-—sm(3x)-&(3X)‘— used more than once.

—2c0s(3x)-sin(3x)-3  (That's what makes the
“chain” in the “chain rule™)

—6cos(3x)sin(3x)

21



Derivative formulas include the chain rule!

. du d . du
= — —SINU =CcoSU—
dx dx dx dx

d . du d , du
— COSU =—SInU— —tanu =sec”u—
dx dx dx dx

etcetera...
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Every derivative problem could be thought of as a
chain-rule problem:

ix2 :2xix =2X-1 =2X
dx 7 dx \
/ 1;
derivative of The derivative of x Is one.

outside function

derivative of
Inside function
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Higher order derivatives

Do you remember your different notations for

derivatives?




Well these are the same notations for higher
power derivatives! Any guesses on what
each means?

f "(X) thesecond derivative of f

y

the third derivative

d’y o
W the second derivative




Example

Find the fourth derivative of f(x) = x* — 2x3

f'(x) = 4x3 — 6x°
f(x) =12x% — 12x
£ (x) = 24x — 12
f””(x) — 24




Implicit Differentiation

e Consider an equation involving
both x and y:

X° —y* =49

e This equation implicitly defines a
function in x

' e It could be defined explicitly
) | y=+x*-49  (where|x|>7)
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Differentiate

e Differentiate both sides of the equation
e each term
e ONe at atime
e use the chain rule for terms containing y

e For we get

X° —y° =49

e Now solve for dy/dx 2y _— 2yy =0
dx
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Differentiate

e Then zx_zyﬂzo gives us
dx
dy

- 2X X
de 2y (y,
e We can replace the y in the results with the

explicit value of y as needed

e This gives us
the slope on the dy X

curve for any — =
legal value of x ~ 0X \/XZ — 49

29



Guidelines for Implicit Differentiation

|, Differentiate both sides of the equation with respect fo x.

2. Collect allterms involving dy/dx on the left side of the equation and move all
other terms (o the right side of the equation.

3. Factor dy/dy outof the left side of the equation

4, Solve for dy/dx by dividing both sides of the equation by the lefl-hand factor
that does not contain dy
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Slope of a Tangent Line

e Given x3+y3=y+21

find the slope of the tangent at (3,-2)
o 3x* +3y’y’ =y’
e Solve fory’ 2y

1—-3y?

y:

| 21
#Substitute x = 3, y = -2 Slope -

—11
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Second Derivative

e Given x?2-y? =49

oy =77 X
y L —
y
oy’ = /" Substitute
d’y y-x-y
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